Track reconstruction efficiency

A. Rakitin
Lancaster University

March 8, 2006 Tralgo Meeting

http://www-d0.fnal.gov/~rakitin/d0_private/tex/2006.Mar.08.Tralgo/tr.pdf

Tracking efficiency study:

Reminder: I use Jan Stark's data sample $Z \rightarrow e^+e^-$:

- 117 pb⁻¹ taken Sep 2002 Jun 2003
- Cuts:
 - iso < 0.15
 - emfrac > 0.9
 - $p_t > 25 \text{ GeV}/c$
 - $m(ee) > 30 \text{ GeV}/c^2$
- Fire at least one of cal. triggers: 2EM_2MD12, 2EM_2MD7, EM_HI
- No track triggers to avoid bias
- One EM cluster in CC ("tag electron") must have matching track
- Another EM cluster in end-caps ("probe electron") does not have to have matching track

Tracking efficiency study:

The plots of di-EM mass (© Jan Stark):

- Upper: all events
- Middle: probe electron has matching track (~66%)
- Lower: probe electron has no matching track (~34%)

- Problem: matching track isn't reconstructed for probe electron in one-third of cases
- Resolution: slight change of reconstruction algorithm may help

Method of study:

- Shoot an imaginary track from PV to EM cluster
- See which hits are close to it
- Understand why they were not composed into track

p_t, ϕ, η distributions:

See if geometry is different for reconstructed and missing tracks:

- The p_t and ϕ distributions of reconstructed and missing tracks look similar
- The η distributions are different by construction:
 - "Tag electron" must be in CC
 - "Probe electron" must be in endcaps

No significant difference observed

Reminder of proposed change in algorithm:

- All the tracks having 3+ hits in SMT Barrels are reconstructed ("3-hit req." of current algorithm)
- Non-reconstructed tracks can be divided into 4 categories:
 - Tracks with

```
either 2 hits in SMT barrels and 1 in F-disks or 1 hit in SMT barrels and 2 in F-disks
```

- Tracks with 2 hits in SMT and 4+ in CFT
- rightharpoonup Tracks with hits being a little outside of "standard" 3σ window
- Tracks with too few hits to be reconstructed

By changing tracking algorithm we can reconstruct first three categories

Combinatorics will increase ⇒ how much time will it take to process? ⇒ Still to be investigated

First two changes are currently under investigation

Results

SMT hits in barrels and disks may follow different patterns:

- 2 in barrels + 1 in disk
- 1 in disk + 2 in barrels
- 1 in barrels + 1 in disk + 1 in barrel

All these configurations should be properly taken into account

I wanted to describe the results, but found a bug in my code last night...

Conclusion

Majority of the missing tracks from the "probe" electrons can be reconstructed by slight variations of the algorithm:

- Require 3+ hits in **both** SMT barrels and disks, not only in barrels
 see how much time all combinations will take to process
- Allow for 2 hits in SMT (barrels and disks) if CFT has 4+ hits
- Allow hits to be further than 3σ away (maybe only for high- p_t tracks?)

Plans:

Still need

- to implement algorithm changes
- to see how much they affect tracking efficiency
- to see how much time it takes to process